149 research outputs found

    Polysorbate cationic synthetic vesicle for gene delivery

    Full text link
    Synthetic nonionic surfactant vesicles (niosomes) are a colloidal system with closed bilayer structures, displaying distinct advantages in stability and cost compared with liposomes. In this article, polysorbate cationic niosomes (PCNs) were developed as gene carriers. The PCNs comprised nonionic surfactants (i.e., polysorbates) and a cationic cholesterol, and were synthesized using a film hydration method. The niosomes thus prepared possessed a regular morphology, and a particle size of 100 ∼ 200 nm, and a zeta potential of +30 ∼ 45 mV. The PCNs showed great physical stability over the course of 4 weeks at room temperature. The binding capacity of PCNs toward oligodeoxynucleotides (ODN) was assessed by a gel retardation approach, which demonstrated that the ionic complexes were formed when ± charge ratio reached to 4 or greater. Gene transfer study showed that the PCNs exhibited a high efficiency in mediating cellular uptake and transferred DNA expression. Based on these findings, PCNs may offer the potential to function as an effective gene delivery system. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79430/1/32999_ftp.pd

    Ultrasound-based sensing models for finger motion classification

    Get PDF

    Towards Understanding and Boosting Adversarial Transferability from a Distribution Perspective

    Full text link
    Transferable adversarial attacks against Deep neural networks (DNNs) have received broad attention in recent years. An adversarial example can be crafted by a surrogate model and then attack the unknown target model successfully, which brings a severe threat to DNNs. The exact underlying reasons for the transferability are still not completely understood. Previous work mostly explores the causes from the model perspective, e.g., decision boundary, model architecture, and model capacity. adversarial attacks against Deep neural networks (DNNs) have received broad attention in recent years. An adversarial example can be crafted by a surrogate model and then attack the unknown target model successfully, which brings a severe threat to DNNs. The exact underlying reasons for the transferability are still not completely understood. Previous work mostly explores the causes from the model perspective. Here, we investigate the transferability from the data distribution perspective and hypothesize that pushing the image away from its original distribution can enhance the adversarial transferability. To be specific, moving the image out of its original distribution makes different models hardly classify the image correctly, which benefits the untargeted attack, and dragging the image into the target distribution misleads the models to classify the image as the target class, which benefits the targeted attack. Towards this end, we propose a novel method that crafts adversarial examples by manipulating the distribution of the image. We conduct comprehensive transferable attacks against multiple DNNs to demonstrate the effectiveness of the proposed method. Our method can significantly improve the transferability of the crafted attacks and achieves state-of-the-art performance in both untargeted and targeted scenarios, surpassing the previous best method by up to 40%\% in some cases.Comment: \copyright 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Prominent Size Effects without a Depolarization Field Observed in Ultrathin Ferroelectric Oxide Membranes

    Get PDF
    The increasing miniaturization of electronics requires a better understanding of material properties at the nanoscale. Many studies have shown that there is a ferroelectric size limit in oxides, below which the ferroelectricity will be strongly suppressed due to the depolarization field, and whether such a limit still exists in the absence of the depolarization field remains unclear. Here, by applying uniaxial strain, we obtain pure in-plane polarized ferroelectricity in ultrathin SrTiO3 membranes, providing a clean system with high tunability to explore ferroelectric size effects especially the thickness-dependent ferroelectric instability with no depolarization field. Surprisingly, the domain size, ferroelectric transition temperature, and critical strain for room-temperature ferroelectricity all exhibit significant thickness dependence. These results indicate that the stability of ferroelectricity is suppressed (enhanced) by increasing the surface or bulk ratio (strain), which can be explained by considering the thickness-dependent dipole-dipole interactions within the transverse Ising model. Our study provides new insights into ferroelectric size effects and sheds light on the applications of ferroelectric thin films in nanoelectronics

    Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations

    Get PDF
    The baiji, or Yangtze River dolphin (Lipotes vexillifer), is a flagship species for the conservation of aquatic animals and ecosystems in the Yangtze River of China; however, this species has now been recognized as functionally extinct. Here we report a high-quality draft genome and three re-sequenced genomes of L. vexillifer using Illumina short-read sequencing technology. Comparative genomic analyses reveal that cetaceans have a slow molecular clock and molecular adaptations to their aquatic lifestyle. We also find a significantly lower number of heterozygous single nucleotide polymorphisms in the baiji compared to all other mammalian genomes reported thus far. A reconstruction of the demographic history of the baiji indicates that a bottleneck occurred near the end of the last deglaciation, a time coinciding with a rapid decrease in temperature and the rise of eustatic sea level

    Fully automated high-quality NMR structure determination of small 2H-enriched proteins

    Get PDF
    Determination of high-quality small protein structures by nuclear magnetic resonance (NMR) methods generally requires acquisition and analysis of an extensive set of structural constraints. The process generally demands extensive backbone and sidechain resonance assignments, and weeks or even months of data collection and interpretation. Here we demonstrate rapid and high-quality protein NMR structure generation using CS-Rosetta with a perdeuterated protein sample made at a significantly reduced cost using new bacterial culture condensation methods. Our strategy provides the basis for a high-throughput approach for routine, rapid, high-quality structure determination of small proteins. As an example, we demonstrate the determination of a high-quality 3D structure of a small 8 kDa protein, E. coli cold shock protein A (CspA), using <4 days of data collection and fully automated data analysis methods together with CS-Rosetta. The resulting CspA structure is highly converged and in excellent agreement with the published crystal structure, with a backbone RMSD value of 0.5 Å, an all atom RMSD value of 1.2 Å to the crystal structure for well-defined regions, and RMSD value of 1.1 Å to crystal structure for core, non-solvent exposed sidechain atoms. Cross validation of the structure with 15N- and 13C-edited NOESY data obtained with a perdeuterated 15N, 13C-enriched 13CH3 methyl protonated CspA sample confirms that essentially all of these independently-interpreted NOE-based constraints are already satisfied in each of the 10 CS-Rosetta structures. By these criteria, the CS-Rosetta structure generated by fully automated analysis of data for a perdeuterated sample provides an accurate structure of CspA. This represents a general approach for rapid, automated structure determination of small proteins by NMR
    corecore